Udemy Course Notes

Complete SQL
Bootcamp

Table of Contents

SELECT

SELECT DISTINCT

WHERE

PostgreSQL WHERE examples

LIMIT

IN Operator

PostgreSQL IN operator examples

NOT IN Operator

ORDER BY

PostgreSQL ORDER BY examples

BETWEEN

PostgreSQL BETWEEN operator examples

LIKE

GROUP BY

PostgreSQL GROUP BY with SUM function example

HAVING

Example

JOINS

SUBQUERY

CREATE TABLE and Constraints

PostgreSQL column constraints

PostgreSQL table constraints

PostgreSQL CREATE TABLE example

SELECT

One of the most common tasks, when you work with PostgreSQL, is to query data from
tables by using the SELECT statement. The SELECT statement is one of the most
complex statements in PostgreSQL. It has many clauses that you can combine to form

a powerful query.

Because of its complexity, we divide the PostgreSQL SELECT statement tutorial into
many short tutorials so that you can learn each clause of the SELECT statement easier.

The following are the clauses that appear in the SELECT statement:

e Select distinct rows by using DISTINCT operator.

e Filter rows by using WHERE clause.

e Sort rows by using the ORDER BY clause.

e Select rows based on various operators such as BETWEEN, IN and LIKE.
e Group rows into groups by using GROUP BY clause

e Apply condition for groups by using HAVING clause.

e Join to another table by using INNER JOIN, LEFT JOIN, RIGHT JOIN

clauses.

Let’s start with a basic form of the SELECT statement to query data from a table. The

following illustrates the syntax of the SELECT statement:

1 SELECT column_1, column_2,

2 FROM table name

Let’'s examine the SELECT statement in more detail:

e First, you specify a list of columns in the table from which you want to query
data in the SELECT clause. You use a comma between each column in case
you want to query data from multiple columns. If you want to query data
from all column, you can use an asterisk (*) as the shorthand for all

columns.

e Second, you indicate the table name after the FROM keyword

Notice that SQL language is case insensitive. It means if you use SELECT or select the

effect is the same. By convention, we will use SQL keywords in uppercase to make the

code easier to read and stand out clearly.

SELECT DISTINCT

The DISTINCT clause is used in the SELECT statement to remove duplicate rows from a
result set. The DISTINCT clause keeps one row for each group of duplicates. You can

use the DISTINCT clause on one or more columns of a table.

The syntax of DISTINCT clause is as follows:

1 SELECT DISTINCT column_1

2 FROM table name;

If you specify multiple columns, the DISTINCT clause will evaluate the duplicate based

on the combination of values of those columns.

1 SELECT DISTINCT column_1l,column_2

2 FROM tbl name;

PostgreSQL also provides the DISTINCT ON (expression) to keep the “first” row of each

group of duplicates where the expression is equal. See the following syntax:

1 SELECT DISTINCT ON (column_1), column_ 2
2 FROM tbl name

ORDER BY column_1,column_ 2;

The order of rows returned from the SELECT statement is unpredictable therefore the

“first” row of each group of the duplicate is also unpredictable. It is good practice to

always use the ORDER BY clause with the DISTINCT ON(expression) to make the result

obvious.

Notice that the DISTINCT ON expression must match the leftmost expression in the

ORDER BY clause.

WHERE

The syntax of the PostgreSQL WHERE clause is as follows:

1 SELECT column_1, column_ 2 .. column n
2 FROM table name

3 WHERE conditions;

The WHERE clause appears right after the FROM clause of the SELECT statement. The
conditions are used to filter the rows returned from the SELECT statement. PostgreSQL

provides you with various standard operators to construct the conditions.

The following table illustrates the standard comparison operators.

OPERATOR DESCRIPTION
= Equal
> Greater than
< Less than
>= Greater than or equal

—
<= Less than or equal
<>or!= Not equal
AND Logical operator AND
OR Logical operator OR

Let’s practice with some examples of using the WHERE clause with conditions.

PostgreSQL WHERE examples

If you want to get all customers whose first names are Jamie, you can use the WHERE
clause with the equal (=) operator as follows:

1 SELECT last_name, first name

2 FROM customer

3 WHERE first name = 'Jamie';

If you want to select the customer whose first name is Jamie and last names is rice, you

can use the AND logical operator that combines two conditions as the following query:

1 SELECT last name, first name

2 FROM customer

—
3 WHERE first name = 'Jamie' AND
4 last _name = 'Rice’';

If you want to know who paid the rental with amount is either less than 1USD or greater

than 8USD, you can use the following query with OR operator:

1 SELECT customer_id,amount,payment date

2 FROM payment

3 WHERE amount <= 1 OR amount >= 8;

LIMIT
PostgreSQL LIMIT is used in the SELECT statement to get a subset of rows returned by

the query. The following is the common syntax of the LIMIT clause:

1 SELECT *
2 FROM TABLE

3 LIMIT n;

PostgreSQL returns n number of rows generated by the query. If n is zero or NULL, it

produces the result that is same as omitting the LIMIT clause.

In case you want to skip a number of rows before returning n rows, you use OFFSET

clause followed by the LIMIT clause as follows:

1 SELECT * FROM table

2 LIMIT n OFFSET m;

PostgreSQL first skips m rows before returning n rows generated by the query. If m is

zero, PostgreSQL will behave like without the OFFSET clause.

Because the order of the rows in the database table is unknown and unpredictable,
when you use the LIMIT clause, you should always use the ORDER BY clause to control

the order of rows. If you don’t do so, you will get an unpredictable result.

10

IN Operator

You use the IN operator in the WHERE clause to check if a value matches any value in

a list of values. The syntax of the IN operator is as follows:

1 wvalue IN (valuel,value2,...)

The expression returns true if the value matches any value in the list i.e., value1,
value2, etc. The list of values is not limited to a list of numbers or strings but also a

result set of a SELECT statement as shown in the following query:

1 value IN (SELECT value FROM tbl name) ;

The statement inside the parentheses is called a subquery, which is a query nested

inside another query.

PostgreSQL IN operator examples
Suppose you want to know the rental information of customer id 1 and 2, you can use

the IN operator in the WHERE clause as follows:

1 SELECT customer_id, rental_id, return_date
2 FROM rental

3 WHERE customer_ id IN (1, 2)

"

4 ORDER BY return date DESC;

NOT IN Operator

You can combine the IN operator with the NOT operator to select rows whose values do

not match the values in the list. The following statement selects rentals of customers

whose customer id is not 1 or 2.

1 SELECT customer_id, rental_ id, return date

2 FROM rental

3 WHERE customer_ id NOT IN (1, 2);

12

ORDER BY

When you query data from a table, PostgreSQL returns the rows in the order that they
were inserted into the table. In order to sort the result set, you use the ORDER BY clause

in the SELECT statement.

The ORDER BY clause allows you to sort the rows returned from the SELECT statement in

ascending or descending order based on criteria specified by different criteria.

The following illustrates the syntax of the ORDER BY clause:

1 SELECT column_l,column_2
2 FROM tbl name

3 ORDER BY column_1 ASC, column_2 DESC;

Let’'s examine the syntax of the ORDER BY clause in more detail:

e Specify the column that you want to sort in the ORDER BY clause. If you sort
the result set by multiple columns, use a comma to separate between two
columns.

e Use ASC to sort the result set in ascending order and DESC to sort the result
set in descending order. If you leave it blank, the ORDER BY clause will use

ASC by default.

13

Let’s take some examples of using the PostgreSQL ORDER BY clause.

PostgreSQL ORDER BY examples
The following query sorts customers by the first name in ascending order:

1 SELECT first name,last_name
2 FROM customer

3 ORDER BY first name ASC;

14

BETWEEN

We use the BETWEEN operator to match a value against a range of values. The following
illustrates the syntax of the BETWEEN operator:
1 value BETWEEN low AND high;

If the value is greater than or equal to the low value and less than or equal to the high

value, the expression returns true, or vice versa.

We can rewrite the BETWEEN operator by using the greater than or equal (>=) or less
than or equal (<=) operators as the following statement:

1 wvalue >= low and value <= high
If we want to check if a value is out of a range, we use the NOT BETWEEN operator as
follows:

1 wvalue NOT BETWEEN low AND high;
The following expression is equivalent to the expression that uses the NOT BETWEEN

operator:

1 +value < low OR value > high

We often use the BETWEEN operator in the WHERE clause of a SELECT, INSERT,

UPDATE or DELETE statement.

15

PostgreSQL BETWEEN operator examples
Let’s take a look at the payment table in the sample database.

The following query selects any payment whose amount is between 8 and 9:

1 SELECT customer_id, payment_id,amount

2 FROM payment

3 WHERE amount BETWEEN 8 AND 9;

16

LIKE

Suppose the store manager asks you find a customer that he does not remember
the name exactly. He just remembers that customer’s first name begins with
something like Jen. How do you find the exact customer that the store manager is
asking? You may find the customer in the customer table by looking at the first
name column to see if there is any value that begins with Jen. It is kind of tedious

because there many rows in the customer table.

Fortunately, you can use the PostgreSQL LIKE operator to as the following query:

1 SELECT first name,last name
2 FROM customer

3 WHERE first name LIKE 'Jen%';

Notice that the WHERE clause contains a special expression: the first_name, the LIKE
operator and a string that contains a percent (%) character, which is referred as a

pattern.

The query returns rows whose values in the first name column begin with Jen and may

be followed by any sequence of characters. This technique is called pattern matching.

17

You construct a pattern by combining a string with wildcard characters and use the LIKE

or NOT LIKE operator to find the matches. PostgreSQL provides two wildcard characters:

e Percent (%) for matching any sequence of characters.

e Underscore (_) for matching any single character.

18

GROUP BY

The GROUP BY clause divides the rows returned from the SELECT statement into
groups. For each group, you can apply an aggregate function e.g., to calculate the sum

of items or count the number of items in the groups.

The following statement illustrates the syntax of the GROUP BY clause:

1 SELECT column_1, aggregate function(column_ 2)
2 FROM tbl name
3 GROUP BY column_1;

The GROUP BY clause must appear right after the FROM or WHERE clause. Followed by
the GROUP BY clause is one column or a list of comma-separated columns. You can also

put an expression in the GROUP BY clause.

PostgreSQL GROUP BY with SUM function example

The GROUP BY clause is useful when it is used in conjunction with an aggregate
function. For example, to get how much a customer has been paid, you use the GROUP
BY clause to divide the payments table into groups; for each group, you calculate the

total amounts of money by using the SUM function as the following query:

19

1 SELECT customer_id,
2 SUM (amount)
3 FROM payment

4 GROUP BY customer_ id;

20

HAVING

We often use the HAVING clause in conjunction with the GROUP BY clause to filter

group rows that do not satisfy a specified condition.

The following statement illustrates the typical syntax of the HAVING clause:

1 SELECT column_l, aggregate function (column_2)
2 FROM tbl name
3 GROUP BY column_1

4 HAVING condition;

The HAVING clause sets the condition for group rows created by the GROUP BY clause
after the GROUP BY clause applies while the WHERE clause sets the condition for
individual rows beforeGROUP BY clause applies. This is the main difference between the

HAVING and WHERE clauses.

In PostgreSQL, you can use the HAVING clause without the GROUP BY clause. In this
case, the HAVING clause will turn the query into a single group. In addition, the
SELECTIlist and HAVING clause can only refer to columns from within aggregate
functions. This kind of query returns a single row if the condition in the HAVING clause is

true or zero row if it is false.

21

Example

You can apply the HAVING clause to selects the only customer who has been spending

more than 200 as the following query:

1 SELECT customer_ id,
2 suM (amount)

FROM payment

GROUP BY customer_id

HAVING SUM (amount) > 200;

22

JOINS

A full review of SQL JOINS is available online here:

https://medium.com/@josemarcialportilla/review-of-sgl-joins-ac5463dc71c9#.ayjcuatvj

23

https://medium.com/@josemarcialportilla/review-of-sql-joins-ac5463dc71c9#.ayjcuatvj

SUBQUERY

A subquery is a query nested inside another query such as SELECT, INSERT, DELETE and

UPDATE. In this tutorial, we are focusing on the SELECT statement only.

To construct a subquery, we put the second query in brackets and use it in the WHERE

clause as an expression:

1 SELECT film id, title, rental_rate
2 FROM film

3 WHERE rental rate > (

4 SELECT AVG (rental_ rate)

5 FROM film);

The query inside the brackets is called a subquery or an inner query. The query that

contains the subquery is known as an outer query.
PostgreSQL executes the query that contains a subquery in the following sequence:

e First, executes the subquery.
e Second, gets the result and passes it to the outer query.

e Third, executes the outer query.

24

CREATE TABLE and Constraints

To create a new table in PostgreSQL, you use the CREATE TABLE statement. The

following illustrates the syntax of the CREATE TABLE statement:

1 CREATE TABLE table name (
2 column name TYPE column_constraint,
3 table_constraint table constraint

4) INHERITS existing_ table name;

Let’'s examine the syntax of the CREATE TABLE statement in more detail.

e First, you specify the name of the new table after the CREATE TABLE clause.
The TEMPORARY keyword is for creating a temporary table, which we will
discuss in the temporary table tutorial.

e Next, you list the column name, its data type, and column constraint. You
can have multiple columns in a table, each column is separated by a
comma (,). The column constraint defines the rules for the column e.g.,
NOT NULL.

e Then, after the column list, you define a table-level constraint that defines
rules for the data in the table.

e After that, you specify an existing table from which the new table inherits. It

means the new table contains all columns of the existing table and the

25

columns defined in the CREATE TABLE statement. This is a PostgreSQL'’s

extension to SQL.

PostgreSQL column constraints

The following are the commonly used column constraints in PostgreSQL.:

NOT NULL - the value of the column cannot be NULL.

UNIQUE - the value of the column must be unique across the whole table.
However, the column can have many NULL values because PostgreSQL
treats each NULL value to be unique. Notice that SQL standard only allows
one NULL value in the column that has the UNIQUE constraint.

PRIMARY KEY - this constraint is the combination of NOT NULL and
UNIQUE constraints. You can define one column as PRIMARY KEY by using
column-level constraint. In case the primary key contains multiple columns,
you must use the table-level constraint.

CHECK - enables to check a condition when you insert or update data. For
example, the values in the price column of the product table must be
positive values.

REFERENCES - constrains the value of the column that exists in a column

in another table. You use REFERENCES to define the foreign key constraint.

26

|
PostgreSQL table constraints
The table constraints are similar to column constraints except that they are applied to

the entire table rather than to an individual column.
The following are the table constraints:

e UNIQUE (column_list)— to force the value stored in the columns listed inside
the parentheses to be unique.

e PRIMARY KEY(column_list) — to define the primary key that consists of
multiple columns.

e CHECK (condition) — to check a condition when inserting or updating data.

e REFERENCES- to constrain the value stored in the column that must exist in

a column in another table.

PostgreSQL CREATE TABLE example

We will create a new table named account that has the following columns with the

corresponding constraints:

e user_id — primary key

e username — unique and not null
e password — not null

e email — unique and not null

e created_on — not null

27

e last_login — null

The following statement creates the account table:

1 CREATE TABLE account (

2 user_id serial PRIMARY KEY,

3 username VARCHAR (50) UNIQUE NOT NULL,
4 password VARCHAR (50) NOT NULL,

5 email VARCHAR (355) UNIQUE NOT NULL,

6 created on TIMESTAMP NOT NULL,

7 last login TIMESTAMP) ;

28

